Synthesis，crystal structure，infrared and Raman spectra of $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$

Tamara Đorđević ${ }^{\text {a，＊}}$ ，Ljiljana Karanović ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Mineralogie und Kristallographie，Universität Wien，Althanstrasse 14，A－1090 Wien，Austria
${ }^{\text {b }}$ Laboratory of Crystallography，Faculty of Mining and Geology，Đušina 7， 11000 Belgrade，Serbia

ARTICLE INFO

Article history：

Received 17 June 2008
Received in revised form
18 July 2008
Accepted 23 July 2008
Available online 26 July 2008

Keywords：

$\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$
Hydrothermal synthesis
Crystal structure investigation
Raman spectroscopy
Infrared spectroscopy
Protonated arsenate

Abstract

The two new compounds， $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$（1）and $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$（2），were synthesized under hydrothermal conditions．They represent previously unknown structure types and are the first compounds synthesized in the systems $\mathrm{SrO} / \mathrm{BaO}-\mathrm{CuO}-\mathrm{As}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ ．Their crystal structures were determined by single－crystal X－ray diffraction［space group $C 2 / c, a=18.536(4) \AA, b=5.179(1) \AA$ ， $c=24.898(5) \AA, \quad \beta=93.67(3)^{\circ}, V=2344.0(8) \AA^{3}, Z=4$ for 1 ；space group $P 4_{2} / n, a=7.775(1) \AA$ ， $c=13.698(3) \AA, V=828.1(2) \AA^{3}, Z=2$ for 2］．The crystal structure of $\mathbf{1}$ is related to a group of compounds formed by $\mathrm{Cu}^{2+}-\left(\mathrm{XO}_{4}\right)^{3-}$ layers $\left(X=\mathrm{P}^{5+}, \mathrm{As}^{5+}\right.$ ）linked by M cations（ $M=$ alkali，alkaline earth， Pb^{2+} ，or Ag^{+}）and partly by hydrogen bonds．In 1 ，worth mentioning is the very short hydrogen bond length， $\mathrm{D} \cdots \mathrm{A}=2.477(3) \AA$ ．It is one of the examples of extremely short hydrogen bonds，where the donor and acceptor are crystallographically different．Compound 2 represents a layered structure consisting of $\mathrm{Cu}_{2} \mathrm{O}_{8}$ centrosymmetric dimers crosslinked by $\mathrm{As} 1 \phi_{4}$ tetrahedra，where ϕ is O or OH ， which are interconnected by Ba，As2 and hydrogen bonds to form a three－dimensional network．The layers are formed by $\mathrm{Cu}_{2} \mathrm{O}_{8}$ centrosymmetric dimers of CuO_{5} edge－sharing polyhedra，crosslinked by As $1 O_{4}$ tetrahedra．Vibrational spectra（FTIR and Raman）of both compounds are described．The spectroscopic manifestation of the very short hydrogen bond in $\mathbf{1}$ ，and ABC－like spectra in $\mathbf{2}$ were discussed．

© 2008 Elsevier Inc．All rights reserved．

1．Introduction

Natural and synthetic metal phosphates，arsenates and vanadates often form tetrahedral－octahedral framework struc－ tures with potentially interesting properties（e．g．，ion conductiv－ ity，ion exchange and catalytic activities）．An ongoing comprehensive study on hydrothermal synthesis，crystallography and properties of arsenate and vanadate (V) compounds in the insufficiently known system $\mathrm{M} 1 \mathrm{O}-\mathrm{M} 2 \mathrm{O}-\mathrm{X}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}\left(M 1=\mathrm{Sr}^{2+}\right.$ ， $\mathrm{Cd}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Hg}^{2+} ; \mathrm{M} 2=\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+, 3+}, \mathrm{Fe}^{2+, 3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ ， $\mathrm{Zn}^{2+} ; X=\mathrm{As}^{5+}, \mathrm{V}^{5+}$ ）yielded a large number of new $M 1^{2+}-, M 2^{2+}-$ and $M 1-M 2-(\mathrm{H}-)$ arsenates and vanadates $[1-10]$ that are characterized structurally，and，in part，also by spectroscopic techniques．

The previous investigations in the system $\mathrm{MO}-\mathrm{CuO}-\mathrm{X}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ ， where $M=$ alkaline－earth ion and $X=\mathrm{P}, \mathrm{V}$ and As have revealed only a couple of compounds：tangeite， $\mathrm{CaCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$［11，12］， conichalcite， $\mathrm{CaCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH}) \quad[13,14]$ nissonite， $\mathrm{Cu}_{2} \mathrm{Mg}_{2}$ $\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}[15], \mathrm{BaCu}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{Ba}_{2} \mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$

[^0]［16］as well as vésigniéite， $\mathrm{BaCu}_{3}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2}$［17］．The crystal structures of $\mathrm{CaCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$ and $\mathrm{CaCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$（both in space group $P 2{ }_{1} 2_{1} 2_{1}$ ，adelite structure type）consist of a three－ dimensional assemblage of distorted $\mathrm{VO}_{4} / \mathrm{AsO}_{4}$ tetrahedra， $\mathrm{CuO}_{4}(\mathrm{OH})_{2}$ tetragonal bipyramids and $\mathrm{CaO}_{7}(\mathrm{OH})$ square antiprisms，sharing corners and edges． $\mathrm{Cu}_{2} \mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$（space group C / c ） consists of thick heteropolyhedral slabs parallel to（100），linked solely by a network of hydrogen bonds．Each slab consists of a sheet of corner－sharing（ $\mathrm{Cu} \phi_{10}$ ）dimers（ $\phi=$ unspecified anions） sandwiched between two $\left[M\left(\mathrm{~T} \phi_{4}\right) \phi_{3}\right]$ sheets of corner－sharing $\left(\mathrm{Mg} \phi_{6}\right)$ and $\left(\mathrm{P} \phi_{4}\right)$ polyhedra． $\mathrm{BaCu}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{Ba}_{2} \mathrm{Cu}$ $\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$（space groups $\mathrm{P} 2_{1} 2_{1} 2_{1}$ and $I 2 / a$ ，respectively）are related to a group of compounds formed by $\mathrm{Cu}^{2+}-\mathrm{PO}_{4} / \mathrm{AsO}_{4}$ layers linked by cations with large ionic radii，and partly by hydrogen bonds．The layers are formed by $\mathrm{Cu}_{3} \mathrm{O}_{12}$ units built from one CuO_{4} square，which is corner－connected to two CuO_{5} polyhedra，where Cu atoms are in $\mathrm{a}(4+1)$ or $(3+2)$ coordination． $\mathrm{Ba}_{2} \mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ features isolated CuO_{4} squares interconnected by PO_{4} tetrahedra to chains which represent a component of the layers found in other compounds．The crystal structure of $\mathrm{BaCu}_{3}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2}$ （space group $\mathrm{C} 2 / \mathrm{m}$ ）is mainly composed of CuO_{6} polyhedra linked to layers，with Ba ions located between them．Edge－sharing CuO_{6} tetragonal bipyramids form chains parallel to（010）and（110）；the
chains are interlocked to form layers parallel to (001). Each of the VO_{4} tetrahedra is linked by three CuO_{6} and one BaO_{12} polyhedra. There are couple other compounds, such as $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}$ $\mathrm{Cu}_{0.27} \mathrm{O}_{0.86} \mathrm{H}_{y}, \mathrm{Ba}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cu}_{0.27} \mathrm{O}_{0.86} \mathrm{H}_{y}, r^{\prime}-\mathrm{Ca}_{19} \mathrm{Cu}_{2} \mathrm{H}_{1.42}\left(\mathrm{PO}_{4}\right)_{14}$, and $r^{\prime \prime}-\mathrm{Ca}_{19} \mathrm{Cu}_{2-y} \mathrm{H}_{2.24}\left(\mathrm{PO}_{4}\right)_{14}(0.64 \leqslant y \leqslant 0.7)[18,19]$, where only a part of copper has oxidation state $2+$. Consequently, they do not belong to the $\mathrm{M} 1 \mathrm{O}-\mathrm{CuO}-\mathrm{X}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ system.

The present contribution reports the hydrothermal synthesis and crystal structures of the two previously unknown compounds. Furthermore, these compounds represent new structure types. Raman and infrared spectra were acquired to obtain further information on both anion groups and especially on the very short hydrogen bond distances, where the donor and acceptor atoms are not equal due to (average) space-group symmetry. Besides potentially interesting properties, continuous investigations on the crystal chemistry of the arsenates are performed because arsenic is at the top of the priority of the most hazardous substances, but little is known about its crystal structures.

2. Experimental

2.1. Synthesis

In course of experiments to synthesize the divalent metal arsenates using hydrothermal method, the single crystals of two new compounds, $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (compound 1) and $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$ (compound 2), were obtained from mixtures of $\mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Merck 7876, $>97 \%$), CuO (Merck 2768), $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products 87687, $>99.9 \%$) and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Mallinckrodt, 3772, $>97 \%$), $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ (distributor unknown), $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products $87687,>99.9 \%$). The mixtures were transferred into Teflon vessels and filled to approximately 75% of the inner volume with distilled water. Finally, they were enclosed into stainless-steel autoclaves. The mixture for $\mathbf{1}$ was heated under autogeneous pressure from 20 to $220^{\circ} \mathrm{C}(3 \mathrm{~h})$, held at that temperature (30 h) and finally cooled to room temperature (24 h). At the end of the reaction the pH of the solvent was 4 , indicating moderate acidity. 1 crystallized as blue transparent prismatic crystals up to 0.15 mm in length (yield ca. 25%) accompanied with transparent, colorless, prismatic crystals of $\mathrm{Sr}\left(\mathrm{AsO}_{3} \mathrm{OH}\right.$) (yield ca. 60%) [7] and uninvestigated amorphous mass (ca. 15\%). The mixture for $\mathbf{2}$ was heated under autogeneous pressure from 20 to $220^{\circ} \mathrm{C}(2 \mathrm{~h})$, held at that temperature $(24 \mathrm{~h})$, then cooled to $100^{\circ} \mathrm{C}$ (14 h), kept at that temperature (24 h), and finally cooled to room temperature $(4 \mathrm{~h})$. The reaction products were filtered, washed thoroughly with distilled water and dried in air at room temperature. At the end of the reaction the pH of the solvent was 3 indicating moderate acidity. 2 crystallized as transparent, turquoise, prismatic crystals up to 0.2 mm in length (yield ca. 35%). It was obtained together with acicular, blue crystals of $\mathrm{BaCu}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ (yield ca. 60\%) [20] and uninvestigated amorphous mass (ca. 5%).

2.2. X-ray diffraction experiments and crystal structure solution

The crystal quality of several single crystals of $\mathbf{1}$ and $\mathbf{2}$ were checked with a Nonius Kappa CCD single-crystal four-circle diffractometer (Mo tube, graphite monochromator, CCD detector frame size: 621×576 pixels, binned mode), equipped with a $300 \mu \mathrm{~m}$ diameter capillary-optics collimator. Each one sample exhibiting sharp reflection spots was chosen for data collection. A complete sphere of reciprocal space (φ and ω scans) was measured at room temperature (see Table 1 for details). For a 2 low-temperature measurement at 120 K was additionally
performed. This measurement resulted, as usual, in a little smaller unit cell. The hydrogen bonds found at the room temperature studies were maintained. Structural data of the refinements at low-temperature are deposited as supplementary material. The intensity data were processed with the Nonius program suite DENZO-SMN [21] and corrected for Lorentz, polarization, and background effects and, by the multi-scan method [21,22], for absorption.

The crystals of $\mathbf{1}$ showed a centered monoclinic unit cell. The space-group symmetry C2/c was found from the extinction rules and confirmed by structure refinements. The crystal structure was solved by direct methods and refined using standard procedures [23,24]. Anisotropic displacement parameters were allowed to vary for all non-hydrogen atoms. However, the anisotropies were found to be only moderate. All five H atoms were found in a difference Fourier map and successfully refined, three of them with restraints on the $\mathrm{O}-\mathrm{H}$ bond distances $[\mathrm{OW} 1-\mathrm{H} 3 / 4=0.89(2)$ and $\mathrm{O} 34-\mathrm{H} 2=0.89(2) \AA$]. Crystal data, information on the data collection and results of the final structure refinement are compiled in Table 1. The positional and displacement parameters are given in Table 2, bond distances and bond angles in Table 4.

The crystals of 2 all showed cell parameters according to a primitive tetragonal metric, space-group symmetry P_{2} / n (origin at $\overline{1}$ on n, at $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ from $\overline{4}$). The crystal structure was solved by direct methods and refined using standard procedures. Anisotropic displacement parameters were allowed to vary for all atoms; only for the H atom, which was located in a difference Fourier map, the isotropic displacement parameter was refined with restraint on the $\mathrm{O}-\mathrm{H}[\mathrm{O}-\mathrm{H}=0.89(2)]$. Crystal data, information on the data collection and results of the final structure refinement are compiled in Table 1. The positional and displacement parameters are given in Table 3, bond distances and bond angles in Table 5. All molecular drawings were produced with ATOMS [42].

2.3. Infrared and Raman spectra

In order to investigate the hydrous species polarized singlecrystal infrared spectra were recorded on a Bruker Tensor 27 FTIR spectrophotometer with mid-IR glowbar light source and KBr beam splitter, attached to a Hyperion 2000 FTIR microscope with liquid nitrogen-cooled mid-IR, broad band MCT detector. A total of 128 scans were accumulated between 4000 and $530 \mathrm{~cm}^{-1}$ circular sample aperture $100 \mu \mathrm{~m}$ diameter and ATR $15 \times$ objective.

In order to study the arsenate groups Raman spectra were measured with a Renishaw RM1000 notch filter-based microRaman system in the spectral range from 4000 to $200 \mathrm{~cm}^{-1}$. The 514.5 nm excitation line of a 20 mW Ar ion laser was focused with a $50 \times / 0.75$ objective on the crystal faces of the single crystals. Raman intensities were collected with a thermo-electrically cooled CCD array detector. The sample spectra were acquired with a nominal exposure time of 30 s (resolution: $4-5 \mathrm{~cm}^{-1}$; mode: continuous grating scan mode, 1200 lines/mm grating).

3. Results and discussion

3.1. $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

The crystal structure of $\mathbf{1}$ can be divided into two types of structural slabs parallel to the (001) plane (Fig. 1). Slab A is placed between the z coordinates from about -0.15 to about 0.15 . This slab is composed of $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups interconnected by ${\mathrm{As} 2 \mathrm{O}_{4}}$ and $\mathrm{As} 3 \mathrm{O}_{3} \mathrm{OH} 2$ coordination tetrahedra, similar to those found in related phosphates [16 and references therein], where different

Table 1
Crystal data, data collection and refinement details for $\mathbf{1}$ and $\mathbf{2}$

Crystal data			
Chemical formula	$\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$	
Temperature	293 K	293 K	120 K
Formula weight, $M_{\mathrm{r}}(\mathrm{g} / \mathrm{mol})$	1432.70	1226.46	1226.46
Space group (no.), Z	C2/c (15), 4	P42/n (86), 2	P42/n (86), 2
$a(\AA)$	18.536(4)	7.790(1)	7.775(1)
$b(\AA)$	5.1790(10)	7.790(1)	7.775(1)
$c(A)$	24.898(5)	13.702(3)	13.698(3)
$\beta\left({ }^{\circ}\right)$	101.28(3)	-	-
$V\left(\AA^{3}\right)$	2344.0(8)	831.5(2)	828.1(2)
Calculated density $D_{x}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	4.060	4.899	4.919
Absorption coefficient, $\mu\left(\mathrm{mm}^{-1}\right)$	20.229	19.669	19.750
$T_{\text {min }} / T_{\text {max }}$	0.2369/0.2945	0.1564/0.2705	0.1556/2695
Crystal size (mm^{3})	$0.10 \times 0.10 \times 0.08$	$0.15 \times 0.15 \times 0.09$	$0.15 \times 0.15 \times 0.09$
Data collection			
Crystal-detector distance (mm)	30	31	31
Rotation width (${ }^{\circ}$)	2	1.5	1.5
Total no. of frames	427	660	450
Collection time per frame (s)	180	140	180
Absorption correction	Multi-scan		Multi-scan
Reflections collected/unique	6494/3420	3554/1842	13614/1824
Observed reflections [$I>2 \sigma(I)$]	2864	1710	1712
$R_{\text {int }}$	0.0172	0.0152	0.0374
$\theta_{\text {max }}\left({ }^{\circ}\right)$	30.034	34.95	34.95
Refinement			
Extinction coefficient, $k^{\text {a }}$	0.00046(2)	0.0025(2)	0.0016(2)
Refined parameters	201	76	76
R-indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0206 \\ & w R_{2}=0.0510 \end{aligned}$	$\begin{aligned} & R_{1}=0.0213 \\ & w R_{2}=0.0528 \end{aligned}$	$\begin{aligned} & R_{1}=0.0280 \\ & w R_{2}=0.0720 \end{aligned}$
R-indices (all data)	$\begin{aligned} & R_{1}=0.0288 \\ & R_{2}=0.0542 \end{aligned}$	$\begin{aligned} & R_{1}=0.0241 \\ & w R_{2}=0.0537 \end{aligned}$	$\begin{aligned} & R_{1}=0.0308 \\ & w R_{2}=0.0731 \end{aligned}$
Goodness-of-fit, S	1.042	1.168	1.160
$(\Delta / \sigma)_{\text {max }}$	0.001	0.000	0.001
$(\Delta \rho)_{\text {max }},(\Delta \rho)_{\text {min }}\left(\mathrm{e} / \AA^{3}\right)$	0.902, -0.728	1.889; -1.309	3.78, -2.27
a, b^{b}	0.0273, 3.06442	0.0170, 2.3064	0.0292, 7.4535

[^1]Table 2
Fractional atomic coordinates and displacement parameters for $\mathbf{1}$

Atom	X	y	Z	$U_{\text {equiv }}$
Sr1	0.129022(14)	0.51834(4)	0.406656(10)	0.00951(6)
Sr2	$0.297704(14)$	0.52007(5)	0.330227(11)	0.01310(7)
Cu1	0.150538(15)	0.02029(5)	$0.295113(11)$	0.01035(7)
Cu 2	0.267498(14)	0.01626(5)	0.444328(10)	0.00739(7)
As1	-0.006302(14)	0.98112(5)	$0.425444(11)$	0.00797(7)
As2	0.0	0.5	0.5	0.01015(10)
As3	0.152892(19)	0.00172(5)	0.525778(14)	0.01042(8)
011	0.21459(10)	0.1889(4)	0.27324(8)	0.0159(4)
012	0.17570(10)	0.7555(4)	$0.33142(8)$	0.0160(4)
013	0.08983(10)	0.1982(3)	0.32314(8)	0.0144(4)
014	0.09950(12)	-0.0784(5)	0.23149(9)	0.0220(5)
021	0.24202(9)	0.2501(3)	0.39801(7)	0.0117(4)
022	0.31267(10)	0.7726(3)	0.42118(7)	0.0129(4)
023	0.19198(9)	0.8859(4)	0.46276(7)	0.0123(4)
024	0.17146(9)	0.3544(3)	0.50278(7)	0.0114(4)
031	0.40578(9)	0.3912(4)	0.41829(8)	0.0125(4)
032	0.01397(10)	0.2982(3)	0.43428(8)	0.0126(4)
033	0.04545(9)	0.8014(3)	0.47566(8)	0.0115(4)
034	0.02343(10)	0.8760(4)	0.36873(8)	0.0134(4)
OW1	0.37956(17)	0.9378(6)	0.33502(11)	0.0432(7)
OW2	0.0	0.5276(7)	0.25	0.0324(9)
H1	0.070(2)	-0.158(8)	0.2333(16)	0.035(12)
H2	0.0423(18)	1.013(5)	0.3535(14)	0.020
H3	0.396(2)	0.994(7)	0.3677(10)	0.049
H4	0.409(2)	1.001(7)	0.3172(17)	0.049
H5	0.027(2)	0.446(8)	0.2714(19)	0.053(14)

$U_{\text {equiv }}$ according to [39].

Table 3
Fractional atomic coordinates and displacement parameters for $\mathbf{2}$ for the room temperature data collection

Atom	x	y	z	$U_{\text {equiv }}$
Ba	0.75	0.25	$0.174635(17)$	$0.01284(7)$
Cu	$0.17540(4)$	$0.06542(4)$	$0.05429(2)$	$0.00865(7)$
As1	$0.67802(3)$	$0.50863(3)$	$0.404045(19)$	$0.00757(7)$
As2	0.25	0.25	0.25	$0.00686(9)$
O1	$0.5547(3)$	$0.6799(3)$	$0.42963(15)$	$0.0130(4)$
O2	$0.5681(3)$	$0.3339(3)$	$0.37279(14)$	$0.0132(4)$
O3	$0.8241(2)$	$0.4752(3)$	$0.49293(14)$	$0.0111(3)$
O4	$0.4050(2)$	$0.3293(3)$	$0.17623(13)$	$0.0113(3)$
O5	$0.7869(3)$	$0.5406(3)$	$0.29626(17)$	$0.0183(4)$
H	$0.841(9)$	$0.640(5)$	0.296	$0.05(2)$

$U_{\text {equiv }}$ according to [39].
Note: The occupancy factor of the H atom is 0.75 .
patterns and links of the $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups by PO_{4} tetrahedra were observed. Like in $\mathrm{Sr}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ [16], $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups are oriented parallel to each other due to translation symmetry (Fig. 2) and form an $A B$ stacking sequence. $\mathrm{Sr}_{1} \mathrm{O}_{7} \mathrm{OH} 2$ polyhedra are sitting in the holes of the network formed by coordination polyhedra of Cu and As atoms.

Slab B is built of $\mathrm{Sr}_{2} \mathrm{O}_{6} \mathrm{OH} 10 \mathrm{~W} 1$ polyhedra and $\mathrm{As}_{1 \mathrm{O}_{3} \mathrm{OH} 1}$ coordination tetrahedra plus an uncoordinated water molecule OW2. Both hydroxyl groups ($\mathrm{OH} 1, \mathrm{OH} 2$) and water molecules

Fig. 1. Crystal structure of $\mathbf{1}$ projected along [010] showing $A B A B$ arrangement of the two parallel slabs.
(OW1, OW2) in $\mathbf{1}$ form hydrogen bonds, which are mainly located in the B slab. Its boundaries lie between z about 0.15 and 0.35 . These slabs show an $A B A B$ stacking sequence along c (Fig. 1).

A central part of a $\mathrm{Cu}_{3} \mathrm{O}_{12}$ group is the Cu 1 atom, which is coordinated by four O atoms (two symmetry-equivalents of O 32 and 033), adopting a square planar coordination with the average $\langle\mathrm{Cu} 1-\mathrm{O}\rangle$ bond length of $1.964 \AA$ (Fig. 2). The $\mathrm{O}-\mathrm{Cu} 1-\mathrm{O}$ angles of neighboring O atoms deviate up to 2° from the ideal value of 90°. For the opposite O atoms, $\mathrm{O}-\mathrm{Cu} 1-\mathrm{O}$ angles are symmetrically constrained to exactly 180° (site symmetry $\overline{1}$). The $\mathrm{Cu1O}_{4}$ coordination polyhedron shares two opposite O atoms with two symmetry-equivalent $\mathrm{Cu}_{2} \mathrm{O}_{5}$ coordination polyhedra and another two O atoms with $\mathrm{As3O}_{3} \mathrm{OH} 2$ tetrahedra. The $\mathrm{Cu} 1-\mathrm{Cu} 2$ distance is $3.8058(9) \AA$. The Cu 2 atom is coordinated by five O atoms adopting a $[4+1]$ coordination which can be described as a square pyramid. In the tetrahedrally distorted basal plane Cu 2 has the four nearest O atoms at distances of $1.947(2)-2.006(2) \AA$. The fifth apical O atom is at a longer distance of $2.372(2) \AA$. In the basal plane the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between neighboring O atoms range from $83.22(8)^{\circ}$ to $101.31(8)^{\circ}$, and between the opposite O atoms they are $144.87(8)^{\circ}$ and $169.28(8)^{\circ}$. Considering these angles the coordination polyhedron can also be considered as an example of the transition from a tetragonal pyramidal (4+1) towards a trigonal bipyramidal ($3+2$) coordination (Fig. 2). A similar configuration was found in [25].

The coordination polyhedra of the Sr atoms are irregular. Both the $\mathrm{Sr} 1 \mathrm{O}_{7} \mathrm{OH} 2$ and $\mathrm{Sr} 2 \mathrm{O}_{6} \mathrm{OH} 1 \mathrm{OW} 1$ polyhedra represent square antiprisms with average $\langle\mathrm{Sr} 1 / 2-\mathrm{O}\rangle$ bond lengths of $2.630 \AA$ each. The individual values range from $2.510(2)$ to $2.923(2) \AA$. The top and bottom faces of the $\operatorname{Sr} 1 / 2$ polyhedra are formed by the atoms $\mathrm{O} 32-\mathrm{O} 13-\mathrm{O} 21-\mathrm{O} 24$ and $\mathrm{O} 33-\mathrm{O} 34 \mathrm{H} 2-\mathrm{O} 12-$ $023 / \mathrm{O} 14 \mathrm{H} 1-\mathrm{O} 31-\mathrm{O} 21-\mathrm{O} 11$ and $\mathrm{O}_{1}{ }^{i}-\mathrm{OW} 1-\mathrm{O} 22-\mathrm{O} 12$, respectively. The gap to further ligands is significant; further distances to O atoms are $\geqslant 3.60 / 3.37 \AA$, respectively. The sum of bond valences for the Sr 1 atom suggest a slight oversaturation if all eight ligands are considered (Table 6). However, neglecting the
longest of the Sr1-O distances gives an unsatisfactory bondvalence sum for the 033 atom.

Sharing a common edge (O12-O21) one $\mathrm{Sr}_{\mathrm{O}}^{\mathrm{O}} \mathrm{O}_{7} \mathrm{OH} 2$ and one $\mathrm{Sr}_{2} \mathrm{O}_{6} \mathrm{OH} 10 \mathrm{~W} 1$ coordination polyhedra build up a pair of $\mathrm{Sr} 1 \phi_{8} \mathrm{Sr} 2 \phi_{8}$ polyhedra, where ϕ is O , OH or $\mathrm{H}_{2} \mathrm{O}$. The $\mathrm{Sr} 1-\mathrm{Sr} 2$ distance in a pair is $3.9656(9) \AA$. Each such pair is bonded to another pair of $\operatorname{Sr} 1 \phi_{8} \operatorname{Sr} 2 \phi_{8}$ polyhedra sharing common vertices (011 and its symmetry-equivalents) and forming ziz-zag chains in the direction of the monoclinic twofold crystallographic b-axis (Fig. 3). In that way, every $\operatorname{Sr} 2 \phi_{8}$ polyhedron shares a common edge with one $\mathrm{Sr} 1 \phi_{8}$ polyhedron and two common vertices with two neighboring $\operatorname{Sr} 2 \phi_{8}$ polyhedra. Inside the chains, $\operatorname{Sr} 1 \phi_{8} \operatorname{Sr} 2 \phi$ polyhedra are additionally connected by hydrogen bonds involving the hydroxyl group OH 2 and coordinated water molecule OW1: O34-H2 $\cdots \mathrm{O} 13$, OW1-H3 $\cdots \mathrm{O} 31$ and OW1-H4 $\cdots \mathrm{O} 14$ (Fig. 4). With a distance of $2.477(3) \AA$ A the hydrogen bond $034-\mathrm{H} 2 \cdots 013$ is considered as very strong H bond [26]. The two hydrogen bonds of the coordinated water molecule OW1 are weak $[\mathrm{OW} 1-\mathrm{H} 3 \cdots \mathrm{O} 31=3.107(3)$ and $\mathrm{OW} 1-\mathrm{H} 4 \cdots \mathrm{O} 14=3.069(4) \AA$ A . The OW1-H $\cdots \mathrm{O}$ angles are bent due to the strong connection of OW1 to Sr2. Two neighboring zig-zag chains are interconnected by hydrogen bonds linking the uncoordinated water molecule OW2. OW2 lies on the inversion center and acts as a double hydrogen bond donor toward the two symmetry-equivalent oxygen atom 013 from the $\mathrm{As}_{\mathrm{S}}^{\mathrm{O}} \mathrm{O}_{3} \mathrm{OH} 1$ group and as a double hydrogen bond acceptor of two symmetry-equivalent OH 1 groups connecting two ${\mathrm{As} 1 \mathrm{O}_{3} \mathrm{OH} 1 \text { tetrahedra (Fig. 4). The hydrogen }}_{\text {n }}$ bonds OW2-H5 $\cdots \mathrm{O} 13$ and $\mathrm{O} 14-\mathrm{H} 1 \cdots \mathrm{OW} 2$ are more or less linear.

In the space between two adjacent zig-zag chains, besides OW2, coordination polyhedra of As and Cu atoms are situated. The coordination figures around three As atoms represent three distinct tetrahedra. All of them have site symmetry 1 . The average〈As-O/OH > bond lengths are very similar: 1.692, 1.687 and $1.690 \AA$. However, the individual As-O bond lengths vary from $1.650(2)$ to $1.706(2) \AA$, but the As-OH bond (As1-O14) is distinctly longer: $1.755(2)$ À. Consequently, two protonated arsenate groups,

Fig. 2. The connection of $\mathrm{Cu}(\mathrm{II})$ atoms and arsenate tetrahedra in $\mathbf{1}$: the $\mathrm{Cu}_{3} \mathrm{O}_{12}$ groups are arranged parallel to each other.
 direction of the b-axis.

Fig. 4. The hydrogen bonds in 1.
$\mathrm{As} \mathrm{O}_{3} \mathrm{OH} 1$ and $\mathrm{As}_{3} \mathrm{O}_{3} \mathrm{OH} 2$ ，besides a pure arsenate tetrahedron As $2 \mathrm{O}_{4}$ ，were identified．Ferraris and Ivaldi［27］found for 36 well－determined monoprotonated arsenate groups an average〈As－OH〉 distance of 1.731 （2）which is somewhat shorter than $1.755(2) \AA$ found in 1．The explanation is given by the fact that besides As1 and H1，the O 14 atom is additionally bonded to Sr 2 and it is also a single hydrogen bond acceptor from the coordinated water molecule OW1，which provides a comparably large contribution to the bond valence．The bond－valence sum for 014 formally is slightly oversaturated（ $2.18 \mathrm{v} . \mathrm{u}$ ．），and as a consequence，a relatively long As1－014 bond is caused in 1．The $\mathrm{O}-\mathrm{As} 1-\mathrm{O}$ angles are consistent with this interpretation．As compared with the ideal tetrahedral angle of 109.47° ， O －As1－O14 angles are slightly smaller［ranging from $98.75(11)^{\circ}$ to $107.20(11)^{\circ}$ ］or slightly larger［ranging from $111.18(9)^{\circ}$ to $118.28(10)^{\circ}$ ］．A similar crystal－chemical behavior was found for protonated phosphate groups［28］．

The $\mathrm{As} 2 \mathrm{O}_{4}$ tetrahedron is much more regular than the protonated ones，with $\mathrm{O}-\mathrm{As} 2-\mathrm{O}$ angles ranging between $105.17(9)^{\circ}$ and $114.04(9)^{\circ}$ ．

The second protonated tetrahedron ${\mathrm{As} 3 \mathrm{O}_{3} \mathrm{OH} 2 \text { shows an }}^{2}$ As3－O34 distance of $1.703(2)$ ，which is somewhat shorter than the already mentioned average $\langle\mathrm{As}-\mathrm{OH}\rangle$ distance of $1.731(2) \AA$ ［27］．Nevertheless，the hydrogen atom H 2 is covalently bonded to 034．With a distance of $2.477(3) \AA$ the hydrogen bond $\mathrm{O} 34-\mathrm{H} 2 \cdots \mathrm{O} 3$ is considered as very strong H bond．Taking into account the contribution of non－hydrogen atoms only，the 034 and O 13 atoms are both undersaturated，i．e．，$v_{i j}(\mathrm{O} 34)$ and $v_{i j}(\mathrm{O} 13)$ are 1.38 and 1.42 v．u．，respectively．Taking into account that the 034 atom is the single donor of a very strong hydrogen bond toward 013 ，and that the 013 atom is the double hydrogen bond acceptor of one strong and one weak hydrogen bond from O 34 and OW2，respectively，the bond valences are well balanced．The angle O34－H2 $\cdots \mathrm{O} 13$ of $165(3)^{\circ}$ is in accordance with an only slightly bent hydrogen bond．The hydrogen bonding geometry is given in Table 4 and Fig． 4 and it is in accordance with the bond valences （Table 6）．

Table 4
Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for the coordination polyhedra in $\mathbf{1}$

Sr1－024	2．510（2）	Cu1－033	1．927（2）		As1－011	1．650（2）
－023	2．516（2）	－033iii	1．927（2）		－012 ${ }^{\text {ii }}$	1．658（2）
－012	2．530（2）	－032 ${ }^{\text {iii }}$	2．001（2）		－013	1．706（2）
－021	2．557（2）	－032	2．001（2）		－014	1．755（2）
－032	2．626（2）	＜Cu1－0〉	1.964		＜As1－0＞	1.692
－013	2．648（2）	$\mathrm{Cu} 2-023{ }^{\text {ii }}$				
－034	2．726（2）		1.94		As2－021	1．676（2）
－033	2．923（2）	－022 ${ }^{\text {iv }}$	1.96		－022 ${ }^{\text {ii }}$	1．678（2）
〈Sr1－0〉	2.630				－023 ${ }^{\text {ii }}$	1．696（2）
		$\begin{aligned} & -024 \\ & -031^{i v} \end{aligned}$	2.00		－024 ${ }^{\text {iv }}$	1．697（2）
Sr2－011	2．544（2）	－033 ${ }^{\text {ii }}$	2．372（2）		＜As2－0＞	1.687
－021	2．559（2）	〈Cu2－0〉	2.05			
－012	2．575（2）				As3－031 ${ }^{v}$	1．671（2）
－022	2．582（2）				O32 ${ }^{\text {vi }}$	1．689（2）
－0W1	2．632（2）				033	1．697（2）
－011 ${ }^{i}$	2．688（2）				034	1．703（2）
－014 ${ }^{\text {i }}$	2．720（2）				＜As3－0＞	1.690
－031	2．747（2）					
〈Sr2－0 ${ }^{\text {¢ }}$	2.630					
Hydrogen bonds						
Donor（D）	H atom	Acceptor（A）	D－H	H．．．A	D－H．．．A	D \cdots A
014	H1	OW2 ${ }^{\text {vi }}$	0．70（4）	2．17（4）	163（4）	2．847（4）
034	H2	013	0．90（2）	1．60（2）	163（3）	2．477（3）
OW1	H3	O31 ${ }^{\text {vii }}$	0．86（2）	2．40（3）	139（3）	3．106（3）
	H4	O14 ${ }^{\text {viii }}$	0．83（2）	2．35（3）	146（4）	3．072（4）
OW2	H5	013	0．75（4）	2．04（4）	175（4）	2．797（3）

[^2]

Fig．5．Single－crystal infrared spectra of 1 on a（010）face（bold：parallel to the elongation，thin：perpendicular to the elongation）．Bands $<1000 \mathrm{~cm}^{-1}$ truncated due to strong absorption．

Fig．6．Raman spectra of a（010）face of 1.

To obtain further information on the anion groups and especially on hydrogen bonds polarized single－crystal infrared （4000－530 cm^{-1} ）and Raman spectra（ $4000-70 \mathrm{~cm}^{-1}$ ）on the （010）face were acquired（Figs． 5 and 6）．Both the IR and the Raman spectra reflect the complexity of the crystal structure． The considerably large numbers of bands below $1000 \mathrm{~cm}^{-1}$ ，which cannot be unambiguously assigned，are caused by the vibrations of three crystallographically different AsO_{4} tetrahedra，of which two are protonated．Spectral data on orthoarsenates that have been previously published are so far rather incomplete［29］and not in good agreement with each other．Therefore，attempts to compare with them failed．However，the distinct frequency ranges may be assigned as follows：The spectral region between 3800 and $1000 \mathrm{~cm}^{-1}$ shows a peculiar increase in＂background absorp－ tion＂（Fig．5），which is a typical feature of compounds with very short，i．e．，very strong hydrogen bonds（e．g．，mozartite［30］， pectolite and serandite［31］，natrochalcite－type compounds［32］， and organic compounds［33］）．It represents，an extremely broad （FWHM $\sim 1000 \mathrm{~cm}^{-1}$ ）and low－energetic band that is assigned to the OH stretching mode of the very strong H bond $\mathrm{O} 34-\mathrm{H} 2 \cdots \mathrm{O} 13$ ． The peculiar shape of the band（large FWHM，wavy appearance， and transmission window at $\sim 2360 \mathrm{~cm}^{-1}$ ）is caused by resonance
and interference phenomena enhanced by the strong anharmonicity [34] of this vibration. Because of the broad band shape, As-O tetrahedral stretching vibrations and lattice modes are superimposed in the low-energy region of the spectrum. The large FWHM aggravates a precise determination of the band center, which is estimated to be roughly at $\sim 1400 \pm 250 \mathrm{~cm}^{-1}$. According to the $d-v$ correlation for hydrogen bonds this wavenumber is in excellent agreement with the refined $\mathrm{O} 34-\mathrm{H} 2 \cdots \mathrm{O} 13$ bond length of only $2.477(3) \AA[33,35]$. All other $\mathrm{O}-\mathrm{H}$ stretching frequencies in this region are in excellent agreement with $d-v$ correlations for hydrogen bonds given in [35]. Very strong broad and partly truncated bands (FWHM~560 cm^{-1}) in infrared spectra at 3293 and $3161 \mathrm{~cm}^{-1}$ at two polarization directions, respectively, and one middle strong broad (FWHM~340 cm^{-1}). Raman band at $3259 \mathrm{~cm}^{-1}$ are in excellent agreement with moderately strong hydrogen bonds of 2.797(3) and 2.847(4) Å. Strong bands at $3540 \mathrm{~cm}^{-1}$ both in infrared and Raman spectra agree with a weak hydrogen bond of $3.072(4) \AA$ and medium strong band at $3637 \mathrm{~cm}^{-1}$ in infrared and $3639 \mathrm{~cm}^{-1}$ in Raman agree with a weak hydrogen bond of $3.106(3) \AA$. The sharp bands at ~ 1600 cm^{-1} in the IR spectra are assigned to the bending mode of the water molecule. Bands around $2360 \mathrm{~cm}^{-1}$ are assigned to the CO_{2} impurities.

Due to strong absorption, bands below $\sim 1000 \mathrm{~cm}^{-1}$ are truncated in infrared spectra and therefore are not further discussed (there was not enough material for a powder IR measurement). In the $1000-700 \mathrm{~cm}^{-1}$ range, Raman spectra show the As-O stretching modes of the $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ and $\left(\mathrm{AsO}_{4}\right)^{3-}$ groups. The intense bands around 905,875 and $860 \mathrm{~cm}^{-1}$ correspond to the symmetric stretching vibrations of $\left(\mathrm{AsO}_{4}\right)^{3-}$ and $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ groups. The very intense band at $808 \mathrm{~cm}^{-1}$ represents the antisymmetric stretching mode of the protonated arsenate group [9]. It has been suggested that the $\left(\mathrm{AsO}_{4}\right)^{3-}$ group is the only tetrahedral oxyanion of the main group elements in which $v_{\text {sym }}>v_{\text {asym }}$ [29].

In the region below $550 \mathrm{~cm}^{-1}$ appear the bending modes of the $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ and $\left(\mathrm{AsO}_{4}\right)^{3-}$ groups, and various low-energetic lattice modes of the compound.

3.2. $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$

The asymmetric unit of $\mathbf{2}$ contains two cations (Ba at a special, and Cu at a general position) and two anions, i.e. two crystallographically non-equivalent arsenate groups, one of which is
partly protonated. It represents a structure with copper arsenate layers normal to [001] interconnected by Ba, As2, and hydrogen bonds (Fig. 7).

The central part of layers in $\mathbf{2}$ is $\mathrm{Cu}_{2} \mathrm{O}_{8}$ centrosymmetric dimer, which contains two CuO_{5} edge-sharing square pyramids. In one layer $\mathrm{Cu}_{2} \mathrm{O}_{8}$ dimers are arranged parallel to each other (Fig. 7), but in neighboring layers they are differently oriented, corresponding to operation of the 4_{2} screw axis and n glide plane, so that succeeding layers form an $A B A B$ stacking sequence. $\mathrm{Cu}_{2} \mathrm{O}_{8}$ centrosymmetric dimers are crosslinked by As $1 \phi_{4}$ tetrahedra, where ϕ is O or OH , forming channels along [001], which are in turn occupied by Ba and As2.

The core of the $\mathrm{Cu}_{2} \mathrm{O}_{8}$ centrosymmetric dimers are planar $\left[\mathrm{Cu}_{2} \mathrm{O}_{2}\right.$] clusters, which contain two Cu atoms bridged by two O 3 atoms. These cores are terminated by six O atoms (three centrosymmetric pairs of $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4$). In the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ plane the $\mathrm{Cu}-\mathrm{Cu}$ distance is $3.2740(8) \AA$, which is longer than $3.1020(8) \AA$ between copper(II) cations in neighboring dimers, suggesting the larger cation-cation repulsion in the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ plane. The $\mathrm{Cu}-\mathrm{O} 3--$ $\mathrm{Cu}^{i}(i=-x,-y,-z)$ angle is $99.57(8)^{\circ}$. Similar layers formed by the $\mathrm{Cu}_{2} \mathrm{O}_{8}$ dimers crosslinked by PO_{4} tetrahedra have been described for $\mathrm{NH}_{4} \mathrm{CuPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ [36].

Similar to Cu 2 in $\mathbf{1}$ the Cu atom in $\mathbf{2}$ is in a distorted squarepyramidal coordination, with the basal O atoms at distances in the range of $1.899(2)-2.048(2) \AA$. They form the tetrahedrally deformed basal plane with an average $\langle\mathrm{Cu}-\mathrm{O}\rangle$ bond length of $1.970 \AA$. As expected, the Cu atom is displaced towards the apical 03 atom at a longer distance of $2.309(2) \AA$. In the basal plane, the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between neighboring oxygen atoms range from $85.89(8)^{\circ}$ to $95.61(8)^{\circ}$. One of the opposite $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles is only $154.44(8)^{\circ}$, whereas the other one is $168.20(9)^{\circ}$. Therefore, as in $\mathbf{1}$, this coordination may be considered as an example for the transition from a tetragonal pyramidal $(4+1)$ toward a trigonal bipyramidal (3+2) coordination [25].

The large cation Ba is bonded to 10 O atoms (five symmetryequivalent pairs), six at shorter and four at longer distances with an average $\langle\mathrm{Ba}-\mathrm{O}\rangle$ bond length of $2.928 \AA$. The individual bond lengths range from $2.758(2)$ to $3.131(2) \AA$. The coordination polyhedron can be described as a bicapped distorted cube. It shares common edges with the two surrounding As $1 \phi_{4}$ and only vertices with another four $\mathrm{As} 1 \phi_{4}$ and two $\mathrm{As} 2 \mathrm{O}_{4}$ tatrahedra. Because of the site symmetry the Ba atom is situated perfectly in the center of the coordination polyhedron.

The two crystallographically distinct As atoms are tetrahedrally coordinated and have mean \langle As- 0\rangle bond distances of 1.688

Fig. 7. The (001) projections of the crystal structure of $\mathbf{2}$ and the slab placed approximately between $0.79<z<1.21$ and formed by [$\mathrm{Cu}_{2} \mathrm{O}_{8}$] dimers, crosslinked by As $1 \mathrm{O}_{4}$ tetrahedra.
and $1.691 \AA$. The As1 atom lies on a general position and the As2 atom has site symmetry $\overline{4}$. The individual As1-O bond lengths in the $\mathrm{As} 1 \mathrm{O}_{3} \mathrm{OH}$ polyhedron vary from $1.664(2)$ to $1.687(2) \mathrm{A}$, but the As $1-05$ bond is $1.721(2) \AA$, which is distinctly longer and suggest the presence of OH group. Though the experimental location of

Table 5

Selected bond distances (\AA) and bond angles (${ }^{\circ}$) for the coordination polyhedra in 2 for the room temperature data collection

${ }^{i}-x+3 / 2,-y+1 / 2, z ;{ }^{i i} y,-x+1 / 2,-z+1 / 2 ;{ }^{i i i}-y+3 / 2, x,-z+1 / 2 ;{ }^{i v}-y+1, x-1 / 2, z-1 / 2$; ${ }^{v} y+1 / 2,-x+1, z-1 / 2 ;{ }^{v i}-x+1 / 2,-y+1 / 2, z ;{ }^{v i i} y-1 / 2,-x+1, z-1 / 2 ;{ }^{v i i i}-y+1 / 2, x-1$, $-z+1 / 2 ;{ }^{i x}-y+1 / 2, x,-z+1 / 2 ;{ }^{x}-x+3 / 2,-y+3 / 2, z$.

Fig. 8. Proposed hydrogen-bonding scheme for 2.
the H atom is not very reliable due to the relatively high atomic numbers of the other atoms within this compound, there is no doubt about the existence of monoprotonated arsenate group and the hydrogen bond $05-\mathrm{H} \cdots 5^{v i}$ (Table 5). In order to keep charge balance, the hydrogen site may not be fully occupied, in this case only 75%, which lead us to the structural formula $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{As}_{2} \mathrm{O}_{4}\right)\left(\mathrm{As1O}_{4}\right)\left(\mathrm{As1O}_{3} \mathrm{OH}\right)_{3-}$ for 2. The As1-O5 bond length is somewhat shorter as compared to the average〈As-OH〉 distance of $1.731(2) \AA$ published in [26], indicating partly occupation. The $\mathrm{O}-\mathrm{As}-\mathrm{O}$ angles are consistent with this interpretation. As compared with the ideal tetrahedral angle of $109.47^{\circ}, \mathrm{O}-\mathrm{As}(1)-\mathrm{O}(5)$ angles are slightly smaller $\left.[98.49(10)-108.05(11))^{\circ}\right]$ and the other $\mathrm{O}-\mathrm{As}(1)-\mathrm{O}$ angles are slightly larger [(110.91(9)-114.16(11) ${ }^{\circ}$. A similar crystal-chemical behavior was found for protonated phosphates [28].

Because of site symmetry of As2, the ${\mathrm{As} 2 \mathrm{O}_{4}}^{\text {tetrahedron is }}$ expectedly much more regular than the protonated one, the O-As2-O angles are 106.61(13) and 110.92(7) ${ }^{\circ}$. Sharing all vertices with BaO_{10} and CuO_{5} coordination polyhedra it contributes to the formation of a framework structure.

Fig. 8 reveals the proposed hydrogen bonding scheme. The OH group (O5) acts as a hydrogen bond donor toward the symmetrically equivalent oxygen 05 and toward oxygen 01 . Therefore, this hydrogen bond can be described as bifurcated. The two $\mathrm{O} \cdots \mathrm{O}$ distances are different: $05 \cdots 5^{v i}=2.669(4) \AA$ is in the range for commonly observed moderately strong hydrogen bonds, whereas the $05 \cdots 1^{\text {vii }}$ distance is long, i.e. 3.102(3) \AA. Furthermore, O 5 acts as a single hydrogen bond acceptor from another symmetrically equivalent 05 . The proposed hydrogen-bonding scheme is more or less in accordance with the bond valences. Considering the contribution of non-hydrogen atoms only, it is to be mentioned that bond valences for all oxygen atoms apart from O5 appear somewhat high (Table 6), but can be attributed to the specific bonding environments of these O atoms (Fig. 8). Three of them ($\mathrm{O} 1, \mathrm{O} 2$ and O 4) are bonded to As, Ba and Cu , and O 3 is bonded to As and two Cu . Although the O 5 atom is strongly undersaturated (Table 7), it is the double donor and single acceptor of a hydrogen bonds, resulting in a balanced bondvalence sum for 05 .

Although the anisotropies of the displacement parameters and r.m.s. amplitudes $(0.0349,0.014,0.0065)$ of the 05 atom are a slightly larger than those of the other four oxygen atoms present in the crystal structure, indicating some disorder, no superstructure reflections violating the extinction rules $h k 0: h+k=2 n$

Table 6
Bond valences v_{ij} (valence units) for $\mathbf{1}$

	Sr 1	Sr2	Cu 1	Cu 2	As1	As2	As3	$\sigma v_{i j}{ }^{\text {a }}$	H1	H2	H3	H4	H5	$\sigma v_{i j}{ }^{\text {b }}$
011	-	$0.32+0.21$	-	-	1.37	-	-	1.90	-	-	-	-	-	1.90
012	0.33	0.29	-	-	1.34	-	-	1.96	-	-	-	-	-	1.96
013	0.24	-	-	-	1.18	-	-	1.42	-	0.39	-	-	0.18×2	1.99
014	-	0.20	-	-	1.03	-	-	1.23	0.84	-	-	0.11	-	2.18
021	0.31	0.30	-	-	-	1.28	-	1.90	-	-	-	-	-	1.90
022	-	0.28	-	0.47	-	1.27	-	2.02	-	-	-	-	-	2.02
023	0.34	-	-	0.46	-	1.21	-	2.01	-	-	-	-	-	2.01
024	0.35	-	-	0.48	-	1.21	-	2.04	-	-	-	-	-	2.04
031	-	0.18	-	0.41	-	-	1.30	1.89	-	-	0.12	-	-	2.01
032	0.25	-	$0.42 \times 2 \downarrow$	-	-	-	1.23	1.90	-	-	-	-	-	1.90
033	0.11	-	$0.51 \times 2 \downarrow$	0.15	-	-	1.21	1.98	-	-	-	-	-	1.98
034	0.19	-	-	-	-	-	1.19	1.38	-	0.61	-	-	-	1.99
OW1	-	0.25	-	-	-	-	-	0.25	-	-	0.88	0.89	-	2.02
OW2	-	-	-	-	-	-	-	0	0.16×2	-	-	-	0.82×2	1.96
$\Sigma v_{\text {ij }}$	2.12	2.03	1.86	1.97	4.92	4.97	4.93		1.00	1.00	1.00	1.00	1.00	

[^3]and $00 l$: $l=2$ n or indications for a larger cell were observed. The structure refinement of the data collected at 120 K did not reveal significant changes and did not indicate any phase transition.

Table 7
Bond valences $v_{i j}$ (valence units) for $\mathbf{2}$ for the room temperature data collection

	Ba	Cu	As1	As2	$\Sigma v_{i j}$
O1	0.24×2	0.37	1.26	-	2.11
O2	0.10×2	0.55	1.32	-	2.07
O3	0.11×2	$0.45 / 0.18$	1.24	-	2.09
O4	0.28×2	0.46	-	1.22	2.16
O5	0.23×2	-	1.13	-	1.59
$\Sigma v_{i j}$	1.92	2.01	4.95	4.91	

The calculation is based on the parameters given in [40], for the hydrogen bonds according to [41].

Fig. 9. Single-crystal infrared spectra of 2. Bands $<1000 \mathrm{~cm}^{-1}$ truncated due to strong absorption.

To obtain further information on the anion groups and especially on hydrogen bonds polarized single-crystal infrared ($4000-530 \mathrm{~cm}^{-1}$) and Raman spectra ($4000-70 \mathrm{~cm}^{-1}$) were acquired (Figs. 9 and 10). Both the IR and the Raman spectra reflect the complexity of the crystal structure. The distinct frequency ranges may be assigned as follows: The three intensity peaks at ca. 2815, 2369 and $1716 \mathrm{~cm}^{-1}$ (Fig. 9) are recognized as the ABC triplet, a well-known phenomenon in spectroscopy of acid oxy-salts. Claydon and Sheppard [37] showed that the socalled $A B C$ structure is formed due to the Fermi resonance between the overtones of $\delta \mathrm{OH}$ and $\gamma \mathrm{OH}$ and the stretching vibrations $v \mathrm{OH}$ of hydrogen bond [38]. Rather than three unrelated bands, the triplet presents a band profile which is commonly believed to result from Fermi resonance interactions between a broad $\nu \mathrm{OH}$ stretching band and relatively narrow and weak bands of the $2 \delta \mathrm{OH}$ in-plane and $2 \gamma \mathrm{OH}$ out-of-plane bending overtones. In 2 the ABC triplt in the infrared spectrum is characteristic of the hydrogen bond $05-\mathrm{H} \cdots \mathrm{O}^{x}(x=-x+3 / 2$, $-y+3 / 2, z$), while the strong peak in infrared and a very weak in the Raman spectrum at $3405 \mathrm{~cm}^{-1}$ is in excellent agreement with the $\mathrm{H} \cdots \mathrm{O} 5^{i i i}$ (iii $=-y+3 / 2, x,-\mathrm{z}+1 / 2$) distance of 1.94(6) \AA [35]. The $\delta \mathrm{OH}$ banding vibrations are observed at 1276 and $1110 \mathrm{~cm}^{-1}$.

Due to the strong absorption, bands below $\sim 1000 \mathrm{~cm}^{-1}$ are truncated in infrared spectra and therefore could not be discussed (it was not enough material for the powder IR measurement). In the $1000-700 \mathrm{~cm}^{-1}$ range, Raman spectra show the As-0 stretching modes of the $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ and $\left(\mathrm{AsO}_{4}\right)^{3-}$ groups. The intense bands around 898,870 and $847 \mathrm{~cm}^{-1}$ correspond to the symmetric stretching vibrations of $\left(\mathrm{AsO}_{4}\right)^{3-}$ and $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ groups. The intense band at $810 \mathrm{~cm}^{-1}$ represents the antisymmetric stretching mode of the protonated arsenate group [9].

In the region below $550 \mathrm{~cm}^{-1}$ appear the bending modes of the $\left(\mathrm{AsO}_{3} \mathrm{OH}\right)^{2-}$ and $\left(\mathrm{AsO}_{4}\right)^{3-}$ groups, and various low-energetic lattice modes of the compound.

4. Conclusion

Two new copper arsenates, strontium copper(II) hydrogen arsenate (V) trihydrate, $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1) and barium copper(II) hydrogen arsenate $(\mathrm{V}) \mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$

Fig. 10. Raman spectra of 2.
(2) were synthesized using hydrothermal method. Their crystal structure and vibrational spectra were discussed in detail. 1 and $\mathbf{2}$ represent first compounds in the $\mathrm{MO}-\mathrm{CuO}-\mathrm{As}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}(M=\mathrm{Sr}, \mathrm{Ba})$ systems, respectively. Furthermore, they both adopt new structure types. This work has demonstrated that synthesis of divalent metal arsenates by low-temperature hydrothermal method can still yield novel structure types with interesting crystal-chemical properties, such as very short hydrogen bond length, where the donor and acceptor are crystallographically different in $\mathbf{1}$ and ABC-like spectra and existence of the $\mathrm{Cu}_{2} \mathrm{O}_{8}$ dimer in 2.

Thorough investigation of the selected metal-arsenate systems would lead to a detailed understanding of which topologies and connectivities are likely to form under which conditions (e.g. temperature, pH , ratios of ionic radii, etc.), a knowledge which could also be applied to the similar phosphates and maybe silicates, which technical use is based on special physical and chemical behavior that is intrinsically dependent on their crystal structure.

Acknowledgments

Financial support of the Austrian Science Foundation (FWF) (Grant T300-N19) and the Ministry for Science and Technological Development of the Republic of Serbia (Project no. 142030) are gratefully acknowledged. The authors are thankful to Prof. Dr. Eugen Libowitzky for helping with the FTIR and Raman analysis.

References

[1] T. Đorđević, Mitt. Österr. Miner. Ges. 153 (2007) 40.
[2] T. Mihajlović, 13th Meeting of the Serbian Crystallographic Society, Novi Sad, June 1-3, 2006, Book of Abstract, 18-19, 2006.
[3] T. Đorđević, Electronic book of abstracts, in: 16th Conference of German Crystallographic Society, March 3-6, 2008, Erlangen, Germany, 1B-05.
[4] T. Đorđević, S. Kovač, Lj. Karanović, Electronic book of abstracts, in: 15th Conference of German Crystallographic Society, March 5-9, 2007, Bremen, Germany, id048, 2007.
[5] T. Đorđević, E. Tillmanns, Abstract Volume, Frontiers in Mineral Sciences, vol. 99, Cambridge, UK, 2007.
[6] T. Đorđević, Lj. Karanović, 14th Meeting of the Serbian Crystallographic Society, Vršac, June 28-30, 2007, Book of Abstract, 34-35, 2007.
[7] T. Mihajlović, H. Effenberger, Z. Kristallogr. 221 (2006) 770-781.
[8] T. Mihajlović, H. Effenberger, Miner. Mag. 68 (2004) 757-767.
[9] T. Mihajlović, E. Libowitzky, H. Effenberger, J. Solid State Chem. 177 (2004) 3963-3970.
[10] T. Mihajlović, U. Kolitsch, H. Effenberger, J. Alloys Compd. 379 (2004) 103-109.
[11] R. Basso, A. Palenzona, L. Zefiro, Neues Jahrb. Mineral. Monatshe. 1989 (1989) 300-308.
[12] R. Basso, L. Zefiro, Neues Jahrb. Mineral. Monatshe. 1994 (1994) 205-208.
[13] M.M. Qurashi, W.H. Barnes, Can. Mineral. 7 (1963) 561-577.
[14] J.E. Taggart, E.E. Foord, Miner. Rec. 11 (1980) 37-38.
[15] A.L. Groat, F.C. Hawthrone, Am. Mineral. 75 (1990) 1170-1175.
[16] H. Effenberger, J. Solid State Chem. 142 (1999) 6-13.
[17] Z. Ma, R. He, X. Zhu, Dizhi Xuebao 4 (1990) 302-308.
[18] A.S. Karpov, J. Nuss, M. Jansen, P.E. Kazin, Y.D. Tretyakov, Solid State Sci. 5 (2003) 277-1283.
[19] B.I. Lazoryak, N. Khan, V.A. Morozov, A.A. Belik, S.S. Khasanov, J. Solid State Chem. 145 (1999) 345-355.
[20] T.C. Chen, S.L. Wang, J. Solid State Chem. 121 (1996) 350-355.
[21] Z. Otwinowski, W. Minor, Meth. Enzymol. 276 (1997) 307.
[22] Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. A 59 (2003) 228.
[23] G.M. Sheldrick, SHELXS-97, A Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.
[24] G.M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
[25] H. Effenberger, J. Solid State Chem. 73 (1988) 118-126.
[26] J. Emsley, Chem. Soc. Rev. 9 (1984) 91.
[27] G. Ferraris, G. Ivaldi, Acta Crystallogr. B 40 (1984) 1-6.
[28] W.H. Baur, Acta Crystallogr. B 30 (1974) 1195-1215.
[29] A.G. Nord, P. Kierkegaard, T. Stefanidis, J. Baran, Chem. Commun. Univ. Stockholm 5 (1988) 1-40.
[30] D. Nyfeler, C. Hoffmann, T. Armbruster, M. Kunz, E. Libowitzky, Am. Mineral. 82 (1997) 841-848.
[31] V.M.F. Hammer, E. Libowitzky, G.R. Rossman, Am. Mineral. 83 (1998) 569-576.
[32] A. Beran, G. Giester, E. Libowitzky, Mineral. Petrol. 61 (1997) 223-235.
[33] A. Novak, Struct. Bond. 18 (1974) 177-216.
[34] V. Szalay, L. Kovács, M. Wöhlecke, E. Libowitzky, Chem. Phys. Lett. 354 (2002) 56-61.
[35] E. Libowitzky, Monatshe. Chem. 130 (1999) 1047-1059.
[36] A. Pujana, J.L. Pizzarro, L. Letama, A. Goni, M.I. Arriortua, T. Rojo, J. Mater. Chem. 8 (1998) 1055-1060.
[37] M.F. Claydon, N. Sheppard, Chem. Commun. 23D (1969) 1431-1433.
[38] S. Bratos, L. Lascombe, A. Novak, OH stretching band of hydrogen-bonded systems in condensed phases, in: H. Ratajczak, W.J. Orville-Thomas (Eds.), Molecular Interactions, Wiley, Chichester, 1980.
[39] R.X. Fischer, E. Tillmanns, Acta Crystallogr. C 44 (1988) 775-776.
[40] N.E. Brese, M. O’Keeffe, Acta Crystallogr. B 47 (1991) 192-197.
[41] G. Ferraris, G. Ivaldi, Acta Crystallogr. B 44 (1988) 341-344.
[42] E. Dowty, ATOMS 6.1, A Computer Program. Kingsport, TN, 1999.

[^0]: ＊Corresponding author．Fax：＋43 142779532.
 E－mail address：tamara．djordjevic＠univie．ac．at（T．Đorđević）．

[^1]: ${ }^{\mathrm{a}} F_{\mathrm{c}}^{*}=k F_{\mathrm{c}}\left[1+0.001 \times F_{\mathrm{c}}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$.
 ${ }^{\mathrm{b}} w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$.

[^2]: ${ }^{i}-x+1 / 2, y+1 / 2,-z+1 / 2 ;{ }^{i} x, y-1, z ;{ }^{i i i}-x,-y+1,-z+1 ;{ }^{i v}-x+1 / 2,-y+1 / 2,-z+1 ;{ }^{v} x-1 / 2$ ， $y+1 / 2, z ;{ }^{v i} x, y-1, z ;{ }^{v i i} x, y+1, z ;{ }^{v i i i} x+1 / 2, y+1 / 2, z$ ．

[^3]: The calculation is based on the parameters given in [40] for the hydrogen bonds according to [41].
 ${ }^{\text {a }}$ Neglecting the contribution from the hydrogen bonds.
 ${ }^{\mathrm{b}}$ Including the contribution from the hydrogen bonds.

